Go语言中的Array、Slice、Map和Set使用详解

Array(数组)

内部机制

在 Go 语言中数组是固定长度的数据类型,它包含相同类型的连续的元素,这些元素可以是内建类型,像数字和字符串,也可以是结构类型,元素可以通过唯一的索引值访问,从 0 开始。

数组是很有价值的数据结构,因为它的内存分配是连续的,内存连续意味着可是让它在 CPU 缓存中待更久,所以迭代数组和移动元素都会非常迅速。

数组声明和初始化

通过指定数据类型和元素个数(数组长度)来声明数组。

复制代码
 代码如下:

 // 声明一个长度为5的整数数组
 var array [5]int


一旦数组被声明了,那么它的数据类型跟长度都不能再被改变。如果你需要更多的元素,那么只能创建一个你想要长度的新的数组,然后把原有数组的元素拷贝过去。

Go 语言中任何变量被声明时,都会被默认初始化为各自类型对应的 0 值,数组当然也不例外。当一个数组被声明时,它里面包含的每个元素都会被初始化为 0 值。

一种快速创建和初始化数组的方法是使用数组字面值。数组字面值允许我们声明我们需要的元素个数并指定数据类型:
复制代码
 代码如下:

 // 声明一个长度为5的整数数组
 // 初始化每个元素
 array := [5]int{7, 77, 777, 7777, 77777}

 如果你把长度写成 ...,Go 编译器将会根据你的元素来推导出长度:
复制代码
 代码如下:

 // 通过初始化值的个数来推导出数组容量
 array := [...]int{7, 77, 777, 7777, 77777}


如果我们知道想要数组的长度,但是希望对指定位置元素初始化,可以这样:

复制代码
 代码如下:

 // 声明一个长度为5的整数数组
 // 为索引为1和2的位置指定元素初始化
 // 剩余元素为0值
 array := [5]int{1: 77, 2: 777}


使用数组

使用 [] 操作符来访问数组元素:

复制代码
 代码如下:

 array := [5]int{7, 77, 777, 7777, 77777}
 // 改变索引为2的元素的值
 array[2] = 1

 我们可以定义一个指针数组:


复制代码
 代码如下:

 array := [5]*int{0: new(int), 1: new(int)}


// 为索引为0和1的元素赋值
 *array[0] = 7
 *array[1] = 77

 在 Go 语言中数组是一个值,所以可以用它来进行赋值操作。一个数组可以被赋值给任意相同类型的数组:


复制代码
 代码如下:

 var array1 [5]string
 array2 := [5]string{"Red", "Blue", "Green", "Yellow", "Pink"}
 array1 = array2

 注意数组的类型同时包括数组的长度和可以被存储的元素类型,数组类型完全相同才可以互相赋值,比如下面这样就不可以:
复制代码
 代码如下:

 var array1 [4]string
 array2 := [5]string{"Red", "Blue", "Green", "Yellow", "Pink"}
 array1 = array2


// 编译器会报错
 Compiler Error:
 cannot use array2 (type [5]string) as type [4]string in assignment

 拷贝一个指针数组实际上是拷贝指针值,而不是指针指向的值:
复制代码
 代码如下:

 var array1 [3]*string
 array2 := [3]*string{new(string), new(string), new(string)}
 *array2[0] = "Red"
 *array2[1] = "Blue"
 *array2[2] = "Green"


array1 = array2
 // 赋值完成后,两组指针数组指向同一字符串


多维数组

数组总是一维的,但是可以组合成多维的。多维数组通常用于有父子关系的数据或者是坐标系数据:
复制代码
 代码如下:

 // 声明一个二维数组
 var array [4][2]int


// 使用数组字面值声明并初始化
 array := [4][2]int{{10, 11}, {20, 21}, {30, 31}, {40, 41}}

// 指定外部数组索引位置初始化
 array := [4][2]int{1: {20, 21}, 3: {40, 41}}

// 同时指定内外部数组索引位置初始化
 array := [4][2]int{1: {0: 20}, 3: {1: 41}}


同样通过 [] 操作符来访问数组元素:
复制代码
 代码如下:

 var array [2][2]int


array[0][0] = 0
 array[0][1] = 1
 array[1][0] = 2
 array[1][1] = 3


也同样的相同类型的多维数组可以相互赋值:
复制代码
 代码如下:

 var array1 = [2][2]int
 var array2 = [2][2]int


array[0][0] = 0
 array[0][1] = 1
 array[1][0] = 2
 array[1][1] = 3

array1 = array2


因为数组是值,我们可以拷贝单独的维:
复制代码
 代码如下:

 var array3 [2]int = array1[1]
 var value int = array1[1][0]


在函数中传递数组

在函数中传递数组是非常昂贵的行为,因为在函数之间传递变量永远是传递值,所以如果变量是数组,那么意味着传递整个数组,即使它很大很大很大。。。

举个栗子,创建一个有百万元素的整形数组,在64位的机器上它需要8兆的内存空间,来看看我们声明它和传递它时发生了什么:
复制代码
 代码如下:

 var array [1e6]int
 foo(array)
 func foo(array [1e6]int) {
   ...
 }

 每一次 foo 被调用,8兆内存将会被分配在栈上。一旦函数返回,会弹栈并释放内存,每次都需要8兆空间。


Go 语言当然不会这么傻,有更好的方法来在函数中传递数组,那就是传递指向数组的指针,这样每次只需要分配8字节内存:
复制代码
 代码如下:

 var array [1e6]int
 foo(&array)
 func foo(array *[1e6]int){
   ...
 }


但是注意如果你在函数中改变指针指向的值,那么原始数组的值也会被改变。幸运的是 slice(切片)可以帮我们处理好这些问题,来一起看看。

Slice(切片)

内部机制和基础

slice 是一种可以动态数组,可以按我们的希望增长和收缩。它的增长操作很容易使用,因为有内建的 append 方法。我们也可以通过 relice 操作化简 slice。因为 slice 的底层内存是连续分配的,所以 slice 的索引,迭代和垃圾回收性能都很好。

slice 是对底层数组的抽象和控制。它包含 Go 需要对底层数组管理的三种元数据,分别是:

1.指向底层数组的指针
 2.slice 中元素的长度
 3.slice 的容量(可供增长的最大值)

创建和初始化

Go 中创建 slice 有很多种方法,我们一个一个来看。

第一个方法是使用内建的函数 make。当我们使用 make 创建时,一个选项是可以指定 slice 的长度:
复制代码
 代码如下:

 slice := make([]string, 5)


如果只指定了长度,那么容量默认等于长度。我们可以分别指定长度和容量:
复制代码
 代码如下:

 slice := make([]int, 3, 5)

 当我们分别指定了长度和容量,我们创建的 slice 就可以拥有一开始并没有访问的底层数组的容量。上面代码的 slice 中,可以访问3个元素,但是底层数组有5个元素。两个与长度不相干的元素可以被 slice 来用。新创建的 slice 同样可以共享底层数组和已存在的容量。


不允许创建长度大于容量的 slice:
复制代码
 代码如下:

 slice := make([]int, 5, 3)


Compiler Error:
 len larger than cap in make([]int)


惯用的创建 slice 的方法是使用 slice 字面量。跟创建数组很类似,不过不用指定 []里的值。初始的长度和容量依赖于元素的个数:
复制代码
 代码如下:

 // 创建一个字符串 slice
 // 长度和容量都是 5
 slice := []string{"Red", "Blue", "Green", "Yellow", "Pink"}


在使用 slice 字面量创建 slice 时有一种方法可以初始化长度和容量,那就是初始化索引。下面是个例子:
复制代码
 代码如下:

 // 创建一个字符串 slice
 // 初始化一个有100个元素的空的字符串 slice
 slice := []string{99: ""}


nil 和 empty slice

有的时候我们需要创建一个 nil slice,创建一个 nil slice 的方法是声明它但不初始化它:
复制代码
 代码如下:

 var slice []int


创建一个 nil slice 是创建 slice 最基本的方法,很多标准库和内建函数都可以使用它。当我们想要表示一个并不存在的 slice 时它变得非常有用,比如一个返回 slice 的函数中发生异常的时候。

创建 empty slice 的方法就是声明并初始化一下:
复制代码
 代码如下:

 // 使用 make 创建
 silce := make([]int, 0)


// 使用 slice 字面值创建
 slice := []int{}


empty slice 包含0个元素并且底层数组没有分配存储空间。当我们想要表示一个空集合时它很有用处,比如一个数据库查询返回0个结果。

不管我们用 nil slice 还是 empty slice,内建函数 append,len和cap的工作方式完全相同。

使用 slice

为一个指定索引值的 slice 赋值跟之前数组赋值的做法完全相同。改变单个元素的值使用 [] 操作符:
复制代码
 代码如下:

 slice := []int{10, 20, 30, 40, 50}
 slice[1] = 25


我们可以在底层数组上对一部分数据进行 slice 操作,来创建一个新的 slice:
复制代码
 代码如下:

 // 长度为5,容量为5
 slice := []int{10, 20, 30, 40, 50}


// 长度为2,容量为4
 newSlice := slice[1:3]


在 slice 操作之后我们得到了两个 slice,它们共享底层数组。但是它们能访问底层数组的范围却不同,newSlice 不能访问它头指针前面的值。

计算任意 new slice 的长度和容量可以使用下面的公式:
复制代码
 代码如下:

 对于 slice[i:j] 和底层容量为 k 的数组
 长度:j - i
 容量:k - i


必须再次明确一下现在是两个 slice 共享底层数组,因此只要有一个 slice 改变了底层数组的值,那么另一个也会随之改变:
复制代码
 代码如下:

 slice := []int{10, 20, 30, 40, 50}
 newSlice := slice[1:3]
 newSlice[1] = 35


改变 newSlice 的第二个元素的值,也会同样改变 slice 的第三个元素的值。

一个 slice 只能访问它长度范围内的索引,试图访问超出长度范围的索引会产生一个运行时错误。容量只可以用来增长,它只有被合并到长度才可以被访问:
复制代码
 代码如下:

 slice := []int{10, 20, 30, 40, 50}
 newSlice := slice[1:3]
 newSlice[3] = 45


Runtime Exception:
 panic: runtime error: index out of range


容量可以被合并到长度里,通过内建的 append 函数。

slice 增长

slice 比 数组的优势就在于它可以按照我们的需要增长,我们只需要使用 append 方法,然后 Go 会为我们做好一切。

使用 append 方法时我们需要一个源 slice 和需要附加到它里面的值。当 append 方法返回时,它返回一个新的 slice,append 方法总是增长 slice 的长度,另一方面,如果源 slice 的容量足够,那么底层数组不会发生改变,否则会重新分配内存空间。
复制代码
 代码如下:

 // 创建一个长度和容量都为5的 slice
 slice := []int{10, 20, 30, 40, 50}


// 创建一个新的 slice
 newSlice := slice[1:3]

// 为新的 slice append 一个值
 newSlice = append(newSlice, 60)


因为 newSlice 有可用的容量,所以在 append 操作之后 slice 索引为 3 的值也变成了 60,之前说过这是因为 slice 和 newSlice 共享同样的底层数组。

如果没有足够可用的容量,append 函数会创建一个新的底层数组,拷贝已存在的值和将要被附加的新值:
复制代码
 代码如下:

 // 创建长度和容量都为4的 slice
 slice := []int{10, 20, 30, 40}


// 附加一个新值到 slice,因为超出了容量,所以会创建新的底层数组
 newSlice := append(slice, 50)


append 函数重新创建底层数组时,容量会是现有元素的两倍(前提是元素个数小于1000),如果元素个数超过1000,那么容量会以 1.25 倍来增长。

slice 的第三个索引参数

slice 还可以有第三个索引参数来限定容量,它的目的不是为了增加容量,而是提供了对底层数组的一个保护机制,以方便我们更好的控制 append 操作,举个栗子:
复制代码
 代码如下:

 source := []string{"apple", "orange", "plum", "banana", "grape"}


// 接着我们在源 slice 之上创建一个新的 slice
 slice := source[2:3:4]


新创建的 slice 长度为 1,容量为 2,可以看出长度和容量的计算公式也很简单:
复制代码
 代码如下:

 对于 slice[i:j:k]  或者 [2:3:4]


长度: j - i       或者   3 - 2
 容量: k - i       或者   4 - 2


如果我们试图设置比可用容量更大的容量,会得到一个运行时错误:
复制代码
 代码如下:

 slice := source[2:3:6]



 Runtime Error:
 panic: runtime error: slice bounds out of range


限定容量最大的用处是我们在创建新的 slice 时候限定容量与长度相同,这样以后再给新的 slice 增加元素时就会分配新的底层数组,而不会影响原有 slice 的值:
复制代码
 代码如下:

 source := []string{"apple", "orange", "plum", "banana", "grape"}


// 接着我们在源 slice 之上创建一个新的 slice
 // 并且设置长度和容量相同
 slice := source[2:3:3]

// 添加一个新元素
 slice = append(slice, "kiwi")


如果没有第三个索引参数限定,添加 kiwi 这个元素时就会覆盖掉 banana。

内建函数 append 是一个变参函数,意思就是你可以一次添加多个元素,比如:
复制代码
 代码如下:

 s1 := []int{1, 2}
 s2 := []int{3, 4}


fmt.Printf("%v\n", append(s1, s2...))

Output:
 [1 2 3 4]


迭代 slice

slice 也是一种集合,所以可以被迭代,用 for 配合 range 来迭代:
复制代码
 代码如下:

 slice := []int{10, 20, 30, 40, 50}


for index, value := range slice {
   fmt.Printf("Index: %d  Value: %d\n", index, value)
 }

Output:
 Index: 0  Value: 10
 Index: 1  Value: 20
 Index: 2  Value: 30
 Index: 3  Value: 40
 Index: 4  Value: 50


当迭代时 range 关键字会返回两个值,第一个是索引值,第二个是索引位置值的拷贝。注意:返回的是值的拷贝而不是引用,如果我们把值的地址作为指针使用,会得到一个错误,来看看为啥:
复制代码
 代码如下:

 slice := []int{10, 20, 30 ,40}


for index, value := range slice {
   fmt.Printf("Value: %d  Value-Addr: %X  ElemAddr: %X\n", value, &value, &slice[index])
 }

Output:
 Value: 10  Value-Addr: 10500168  ElemAddr: 1052E100
 Value: 20  Value-Addr: 10500168  ElemAddr: 1052E104
 Value: 30  Value-Addr: 10500168  ElemAddr: 1052E108
 Value: 40  Value-Addr: 10500168  ElemAddr: 1052E10C


value 变量的地址总是相同的因为它只是包含一个拷贝。如果想得到每个元素的真是地址可以使用 &slice[index]。

如果不需要索引值,可以使用 _ 操作符来忽略它:
复制代码
 代码如下:

 slice := []int{10, 20, 30, 40}


for _, value := range slice {
   fmt.Printf("Value: %d\n", value)
 }


 Output:
 Value: 10
 Value: 20
 Value: 30
 Value: 40


range 总是从开始一次遍历,如果你想控制遍历的step,就用传统的 for 循环:

复制代码
 代码如下:

 slice := []int{10, 20, 30, 40}


for index := 2; index < len(slice); index++ {
   fmt.Printf("Index: %d  Value: %d\n", index, slice[index])
 }


 Output:
 Index: 2  Value: 30
 Index: 3  Value: 40


同数组一样,另外两个内建函数 len 和 cap 分别返回 slice 的长度和容量。

多维 slice

也是同数组一样,slice 可以组合为多维的 slice:
复制代码
 代码如下:

 slice := [][]int{{10}, {20, 30}}


需要注意的是使用 append 方法时的行为,比如我们现在对 slice[0] 增加一个元素:

复制代码
 代码如下:

 slice := [][]int{{10}, {20, 30}}
 slice[0] = append(slice[0], 20)


那么只有 slice[0] 会重新创建底层数组,slice[1] 则不会。

在函数间传递 slice

在函数间传递 slice 是很廉价的,因为 slice 相当于是指向底层数组的指针,让我们创建一个很大的 slice 然后传递给函数调用它:
复制代码
 代码如下:

 slice := make([]int, 1e6)


slice = foo(slice)

func foo(slice []int) []int {
     ...
     return slice
 }


Map

内部机制

map 是一种无序的键值对的集合。map 最重要的一点是通过 key 来快速检索数据,key 类似于索引,指向数据的值。

map 是一种集合,所以我们可以像迭代数组和 slice 那样迭代它。不过,map 是无序的,我们无法决定它的返回顺序,这是因为 map 是使用 hash 表来实现的。

map 的 hash 表包含了一个桶集合(collection of buckets)。当我们存储,移除或者查找键值对(key/value pair)时,都会从选择一个桶开始。在映射(map)操作过程中,我们会把指定的键值(key)传递给 hash 函数(又称散列函数)。hash 函数的作用是生成索引,索引均匀的分布在所有可用的桶上。hash 表算法详见:July的博客—从头到尾彻底解析 hash 表算法

创建和初始化

Go 语言中有多种方法创建和初始化 map。我们可以使用内建函数 make 也可以使用 map 字面值:
复制代码
 代码如下:

 // 通过 make 来创建
 dict := make(map[string]int)


// 通过字面值创建
 dict := map[string]string{"Red": "#da1337", "Orange": "#e95a22"}



使用字面值是创建 map 惯用的方法(为什么不使用make)。初始化 map 的长度依赖于键值对的数量。

map 的键可以是任意内建类型或者是 struct 类型,map 的值可以是使用 ==操作符的表达式。slice,function 和 包含 slice 的 struct 类型不可以作为 map 的键,否则会编译错误:
复制代码
 代码如下:

 dict := map[[]string]int{}


Compiler Exception:
 invalid map key type []string


使用 map

给 map 赋值就是指定合法类型的键,然后把值赋给键:
复制代码
 代码如下:

 colors := map[string]string{}
 colors["Red"] = "#da1337"


如果不初始化 map,那么就会创建一个 nil map。nil map 不能用来存放键值对,否则会报运行时错误:

复制代码
 代码如下:

 var colors map[string]string
 colors["Red"] = "#da1337"


Runtime Error:
 panic: runtime error: assignment to entry in nil map


测试 map 的键是否存在是 map 操作的重要部分,因为它可以让我们判断是否可以执行一个操作,或者是往 map 里缓存一个值。它也可以被用来比较两个 map 的键值对是否匹配或者缺失。

从 map 里检索一个值有两种选择,我们可以同时检索值并且判断键是否存在:
复制代码
 代码如下:

 value, exists := colors["Blue"]
 if exists {
   fmt.Println(value)
 }


另一种选择是只返回值,然后判断是否是零值来确定键是否存在。但是只有你确定零值是非法值的时候这招才管用:
复制代码
 代码如下:

 value := colors["Blue"]
 if value != "" {
   fmt.Println(value)
 }


当索引一个 map 取值时它总是会返回一个值,即使键不存在。上面的例子就返回了对应类型的零值。

迭代一个 map 和迭代数组和 slice 是一样的,使用 range 关键字,不过在迭代 map 时我们不使用 index/value 而使用 key/value 结构:
复制代码
 代码如下:

 colors := map[string]string{
     "AliceBlue":   "#f0f8ff",
     "Coral":       "#ff7F50",
     "DarkGray":    "#a9a9a9",
     "ForestGreen": "#228b22",
 }


for key, value := range colors {
   fmt.Printf("Key: %s  Value: %s\n", key, value)
 }


如果我们想要从 map 中移除一个键值对,使用内建函数 delete(要是也能返回移除是否成功就好了,哎。。。):

复制代码
 代码如下:

 delete(colors, "Coral")


for key, value := range colors {
   fmt.Println("Key: %s  Value: %s\n", key, value)
 }


在函数间传递 map

在函数间传递 map 不是传递 map 的拷贝。所以如果我们在函数中改变了 map,那么所有引用 map 的地方都会改变:

复制代码
 代码如下:

 func main() {
   colors := map[string]string{
      "AliceBlue":   "#f0f8ff",
      "Coral":       "#ff7F50",
      "DarkGray":    "#a9a9a9",
      "ForestGreen": "#228b22",
   }


  for key, value := range colors {
       fmt.Printf("Key: %s  Value: %s\n", key, value)
   }

  removeColor(colors, "Coral")

  for key, value := range colors {
       fmt.Printf("Key: %s  Value: %s\n", key, value)
   }
 }

func removeColor(colors map[string]string, key string) {
     delete(colors, key)
 }


执行会得到以下结果:

复制代码
 代码如下:

 Key: AliceBlue Value: #F0F8FF
 Key: Coral Value: #FF7F50
 Key: DarkGray Value: #A9A9A9
 Key: ForestGreen Value: #228B22
     
 Key: AliceBlue Value: #F0F8FF
 Key: DarkGray Value: #A9A9A9
 Key: ForestGreen Value: #228B22


可以看出来传递 map 也是十分廉价的,类似 slice。

Set

Go 语言本身是不提供 set 的,但是我们可以自己实现它,下面就来试试:

复制代码
 代码如下:

 package main


import(
   "fmt"
   "sync"
 )

type Set struct {
   m map[int]bool
   sync.RWMutex
 }

func New() *Set {
   return &Set{
     m: map[int]bool{},
   }
 }

func (s *Set) Add(item int) {
   s.Lock()
   defer s.Unlock()
   s.m[item] = true
 }

func (s *Set) Remove(item int) {
   s.Lock()
   s.Unlock()
   delete(s.m, item)
 }

func (s *Set) Has(item int) bool {
   s.RLock()
   defer s.RUnlock()
   _, ok := s.m[item]
   return ok
 }

func (s *Set) Len() int {
   return len(s.List())
 }

func (s *Set) Clear() {
   s.Lock
   defer s.Unlock()
   s.m = map[int]bool{}
 }

func (s *Set) IsEmpty() bool {
   if s.Len() == 0 {
     return true
   }
   return false
 }

func (s *Set) List() []int {
   s.RLock()
   defer s.RUnlock()
   list := []int{}
   for item := range s.m {
     list = append(list, item)
   }
   return list
 }

func main() {
   // 初始化
   s := New()
   
   s.Add(1)
   s.Add(1)
   s.Add(2)

  s.Clear()
   if s.IsEmpty() {
     fmt.Println("0 item")
   }
   
   s.Add(1)
   s.Add(2)
   s.Add(3)
   
   if s.Has(2) {
     fmt.Println("2 does exist")
   }
   
   s.Remove(2)
   s.Remove(3)
   fmt.Println("list of all items", S.List())
 }


注意我们只是使用了 int 作为键,你可以自己实现用 interface{} 作为键,做成更通用的 Set,另外,这个实现是线程安全的。

总结

1.数组是 slice 和 map 的底层结构。
 2.slice 是 Go 里面惯用的集合数据的方法,map 则是用来存储键值对。
 3.内建函数 make 用来创建 slice 和 map,并且为它们指定长度和容量等等。slice 和 map 字面值也可以做同样的事。
 4.slice 有容量的约束,不过可以通过内建函数 append 来增加元素。
 5.map 没有容量一说,所以也没有任何增长限制。
 6.内建函数 len 可以用来获得 slice 和 map 的长度。
 7.内建函数 cap 只能作用在 slice 上。
 8.可以通过组合方式来创建多维数组和 slice。map 的值可以是 slice 或者另一个 map。slice 不能作为 map 的键。
 9.在函数之间传递 slice 和 map 是相当廉价的,因为他们不会传递底层数组的拷贝。

有话要说